
A Taxonomy of Automatic Di�erentiation ToolsDavid W. Juedes�
Abstract. Many of the current automatic di�erentiation (AD) tools have similar charac-teristics. Unfortunately, it is often the case that the similarities between these various ADtools can not be easily ascertained by reading the corresponding documentation. To clarifythis situation, a taxonomy of AD tools is presented. The taxonomy places AD tools intothe Elemental, Extensional, Integral, Operational, and Symbolic classes. This taxonomy isused to classify twenty-nine AD tools. Each tool is examined individually with respect tothe mode of di�erentiation used and the degree of derivatives computed. A list detailingthe availability of the surveyed AD tools is provided in Appendix A.1 Introduction. Over the past 30 years, the development of automatic di�erentia-tion (AD) tools has been driven by the need for the e�cient evaluation of exact derivativevalues and fueled by our ever increasing ability to create such tools. One of the principalmotivations for the creation of AD tools has been the need for the exact derivative valuesof functions used in scienti�c computations. As scientists have used more sophisticatedmodels in which �rst- and higher-order derivatives are used, this need has intensi�ed. Inatmospheric and oceanographic research, the need for exact derivative values is particularlygreat.As the need for AD tools has intensi�ed, advances in the science of programming lan-guages and modern computer algebra systems have made the creation of such tools lessformidable. Numerous researchers have taken advantage of these advances by creatingpowerful AD tools. For example, lexical-analyzer generator tools such as Lex and compiler-compiler tools such as Yacc have made the task of creating new languages or extending oldlanguages much less tedious. Several AD tools have been created with the help of languagedevelopment tools like Lex and Yacc. The most notable of these AD tools are the FOR-TRAN precompilers JAKE [Spee80a] and PADRE2 [Kubo90a], and the modeling languageAMPL [Four90a].During the SIAM Workshop on Automatic Di�erentiation, it became clear that theforces driving AD technology had caused a variety of di�erent tools to be created. Of thesevarious tools, many of them had similar characteristics. Unfortunately, the similarities�Department of Computer Science, Iowa State University, Ames, IA.1



2 Part VIII. Experience with Automatic Di�erentiation Softwarebetween many of these AD tools were not easily ascertained by reading the correspondingdocumentation. Clearly, a coherent framework for discussing AD tools was necessary.In an attempt to create a coherent framework for discussing AD tools, this paperpresents a taxonomy of AD tools. The taxonomy presented here is designed to accentuatethe convergence of ideas on how to provide automatic di�erentiation and to emphasize theevolutionary process molding these ideas. Each automatic di�erentiation tool examined inthis paper is classi�ed as either an Elemental, Extensional, Operational, Integral, or SymbolicAD tool. This classi�cation is based on the level of integration of automatic di�erentiationprovided by the source language.In x4, the taxonomy is applied to survey twenty-nine AD tools. The framework of thetaxonomy is used to discuss the important features of each tool. We primarily examine eachtool with respect to the technique (mode) used to evaluate derivatives and with respect tothe maximum degree of derivatives that can be computed. Other features are examinedwhen appropriate. These additional features include the storage strategy for the reversemode and restrictions on the source language. A summary of this examination is providedin Table 1.Several of the tools have yet to be named by their respective authors. In the remainderof this paper, unnamed tools are referred to by the �rst author's initials followed by anumber. A large percentage of the tools presented are either commercially available, oravailable free of charge or at a nominal cost. The remaining tools are unavailable. A listdetailing the availability of these tools is provided in Appendix A.2 Preliminaries. Automatic di�erentiation is the process of producing the valuesof a function's derivatives from some representation of the function. The key di�erencebetween classical automatic di�erentiation and symbolic di�erentiation is that the latergenerates the symbolic representation of a function's derivatives while the former doesnot. Automatic di�erentiation is primarily concerned with the di�erentiation of algorithmsexpressed in some general purpose programming language.We are primarily concerned with scalar functions of the form f : Rm ! R and vectorfunctions of the form f : Rm ! Rn. Let X =< x1; :::; xm > be a vector of length m,Y =< y1; :::; yn > be a vector of length n, and y 2 R. Then the gradient of a scalar functiony = f(X) is G 2 Rm where each Gi = @f=@xi. The Hessian of the scalar function y = f(X)is H 2 (Rm)m where each Hij = @f=@xi@xj. The Jacobian of a vector function Y = f(X) isJ 2 (Rm)n where each Jij = @yi=@xj . Note that when we refer to derivatives, we implicitlyrefer to related values such as Taylor series or sensitivities.There are essentially two di�erent techniques used to automatically di�erentiate func-tions, the forward mode and the reverse mode. These di�erent techniques can be best de-scribed by considering the directed acyclic graph (DAG) of the computation < y1; :::; yn >=F (< x1; :::; xm >) for some vector function F . In the reverse mode, derivative values prop-agate from the dependent variables y1; :::; yn to the independent variables x1; :::; xm. In theforward mode, derivative values propagate from the independent variables to the dependentvariables. For more in-depth descriptions of these automatic di�erentiation techniques, see[Rall81a, Irim87a, Grie89a, etc.].As noted by Griewank [Grie89a], neither the forward mode nor the reverse mode isoptimal in all cases. The forward mode can be used to produce the partial derivatives of alldependent variables with respect to a single independent variable in time proportional to theevaluation of F . Similarly, the reverse mode can be used to produce the partial derivativesof a single dependent variable with respect to all independent variables in time proportionalto the evaluation of F . These two previous observations can be used to estimate which modeis more e�cient (in terms of numeric operations) when computing Jacobians. Consider thefunction < y1; :::; yn >= F (< x1; :::; xm >). For values of n � m, the forward mode is



Taxonomy of Automatic Di�erentiation Tools 3probably more e�cient than the reverse mode. Similarly, for values of m� n, the reversemode is probably more e�cient than the forward mode.Current implementations of the forward and reverse mode di�er most in terms of spatialcomplexity. A typical implementation of the forward mode requires less thanm (the numberof independent variables) times the storage requirement of the original function. Mostimplementations of the reverse mode require additional space proportional to the numberof numeric operations executed by the original function.3 A Taxonomy. As mentioned earlier, AD tools provide support for producing thevalues of a function's derivatives from some representation of the function. Each AD toolassumes that this function is represented in some source language, which may be a symboliclanguage or a programming language. AD tools aid in the transformation from the sourcelanguage to a form which may easily be used to generate derivative values. This trans-formation may be either explicit or implicit. For example, the FORTRAN precompiler inthe GRESS [Horw88a] package does an explicit transformation from its source language (aminor extension of FORTRAN) to standard FORTRAN. The taxonomy presented in thispaper classi�es automatic di�erentiators based on how, where, and when this transformationis performed.The most basic class is composed of the elemental AD tools. These tools operate onthe premise that every useful function can be decomposed into a sequence of elementaryoperations. The derivative value of an elementary operation is only dependent upon thevalues of the operation's arguments and their derivatives. Therefore, computing derivativesfor the elementary operations can be performed locally and at a �xed cost. Elemental toolsare often implemented as a set of procedures, one for each operation. Each procedure takesas input the values of an operation's arguments and its derivatives, and returns the resultand its derivatives. The transformation from the source language is performed manually bydecomposing a function into a sequence of procedure calls for the elementary operations.Lawson's WCOMP and UCOMP packages [Laws71a] are examples of elemental AD tools.Based on the concepts pioneered by the elemental tools, the class of extensional toolsprovide extensions to standard programming languages for automatic di�erentiation. Theyusually automate the process of decomposing complicated right-hand-sides of equations intosequences of elementary operations. Typically, automatic di�erentiators in this class useprecompilers to perform the transformation from the extensions to the original language. Forexample, the FORTRAN precompilers JAKEF [Hill85a], GRESS [Horw88a] and PADRE2[Kubo90a] transform their variants of FORTRAN into standard FORTRAN 77. For thisreason, we classify them as extensional AD tools.The integral tools push the ideas embodied by the extensional tools one step further.Integral tools have the ability to automatically di�erentiate functions integrated withintheir environment or language. Therefore, no explicit transformation of the source codeis necessary. The transformation is performed implicitly by the respective compiler orinterpreter. Integral tools typically di�er from extensional tools in the sense that theyare clearly di�erent languages, and not just minor extensions. They are characterized bysource languages that directly provide automatic di�erentiation. Several of the earliestAD tools belong to the integral class. The best examples of these are SLANG [Adam69a,McCu69a, Tham69a] and PROSE [Tham75a, PROS77a, Tham82a, Krin84a, Pfei87a]. Morerecent examples of integral AD tools are the modeling language AMPL [Four90a], and theFM/FAD [Mazo91a] package.The operational tools have their origins in the ideas embodied by both the elemental andextensional tools. Operational tools provide automatic di�erentiation within the constructsprovided by a programming language that provides polymorphic functions and operations.Automatic di�erentiation is provided by de�ning a new data type for which di�erentiation
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Figure 1: The relationship among the various classes of AD tools.can be performed easily. For these tools, the transformation necessary to produce derivativesis implicitly handled by the programming language when it interprets the new data type.The standard arithmetic operators are usually overloaded to handle operations performedon this new data type. In this case, statements like x = y�z+sin(z) can be written withoutbeing decomposed into elementary operations.The modern programming languages ADA, C++, and PASCAL-SC all provide theoperator overloading necessary to create operational AD tools. Some languages, such asC++, also provide constructors and destructors for variables as they enter and leave theirscope of existence. These facilities allow AD tools to transparently allocate and deallocatememory when necessary, as well as perform other maintenance procedures. The operationaltools ADOL-C [Grie92a] and MXYZPTLK [Mich90a] make use of these facilities in C++.The �nal class of AD tools is the class of symbolic tools. Tools in this class either processa symbolic representation of a function at run-time, or use a computer algebra systemto produce a di�erentiated function that is then translated into a standard programminglanguage. These tools are the most di�cult to classify and form a diverse class. Mosttools in this class have been directly in
uenced by either computer algebra systems or theelemental AD tools.The �ve classes embody the ideas behind a paradigmatic evolution of AD tools. Thenotion that complicated functions can be decomposed into sequences of elementary opera-tions is the basis of all AD tools. This idea is embodied by the Elemental class. Competingideas on how functions are most naturally represented delineate the remaining classes. TheSymbolic class embodies the idea that functions should be represented algebraically insteadof algorithmically. The Extensional, Integral, and Operational classes take the oppositestance. These remaining classes are distinguished by their respective ideas concerning themeans used to provide automatic di�erentiation. The Operational class embodies the ideathat automatic di�erentiation can be provided by a di�erential data type in a languagewith operator overloading. The Extensional class realizes the notion of extending a lan-guage to include automatic di�erentiation. Finally, the Integral class embodies the ideathat automatic di�erentiation can be provided directly within a programming language.This evolutionary relationship is illustrated in Figure 1.The �ve classes provide a su�cient framework for examining a wide variety of ADtools. We subdivide each of the �ve classes further by the mode used to perform automaticdi�erentiation. All current automatic di�erentiators use either the forward or reverse mode,and some use both modes. The following section examines twenty-nine AD tools with



Taxonomy of Automatic Di�erentiation Tools 5respect to their class, mode of di�erentiation, and degree of derivatives computed.4 The Survey. The goal of this section is to give a coherent analysis of the currentstate of AD technology. This goal is accomplished by(i) using the taxonomy presented in x3 to classify twenty-nine current AD tools, andby(ii) giving a brief description of each classi�ed tool.The descriptions stress each tool's mode of di�erentiation and ability to produce higherderivatives. The descriptions of the tools that fall in the Elemental, Extensional, Oper-ational, Integral, and Symbolic classes are found in xx4.1-4.5, respectively. Additionally,Figures 2 and 3 are provided to emphasize important subdivisions within the Extensionaland Operational classes. Table 1 is provided to summarize this section.The survey presented in this section was generated in the following manner. First,a detailed questionnaire was generated and distributed by the author. The responses tothe questionnaire and the available literature were then carefully examined. From thisexamination, the taxonomy was developed. Following this, each tool was classi�ed, andshort, uniform descriptions of each tool were made. The authors of the respective tools werethen given the oppurtunity to review the classi�cation and descriptions of their respectivetools.Some of the tools in the survey could have been cross-classi�ed. For example, theGRAD function within MATLAB is classi�ed here as a symbolic AD tool, but it has someof the characteristics common to the integral AD tools. Similarly, FORTRAN CALCULUSis classi�ed here as an extensional AD tool, yet it has some of the properties of the integralAD tools. Tools that could be cross-classi�ed were placed in the class whose characteristicsbest described them.4.1 The Elemental Tools. Of the tools surveyed, three of them are elemental tools.All three of these tools produce derivatives in the forward mode.(1) TheWCOMP and UCOMP [Laws71a, Math89a] packages consist of FORTRAN77 subroutines for executing operations that propagate derivatives in the forwardmode. The WCOMP package contains subroutines that perform operations usingreal-valued arrays of length N +1. Each array contains the value of a function f(t)and and its �rstN derivatives with respect to an independent variable t. In a similarfashion, the UCOMP package contains subroutines that compute a function's valueand its �rst- and second-order partial derivatives with respect to N independentvariables. Each package contains subroutines for a number of elementary binaryand unary operations.A user of either the WCOMP or UCOMP package must directly write code thatcalls the appropriate subroutines. For example, the statement a = x + y + z iswritten as follows using the WCOMP package.call SWSUM(N,Y,Z,Q) // Q=Y+Zcall SWSUM(N,Q,X,A) // A=X+QBoth packages support single and double precision arithmetic.(2) The MJ1 [Jerr89a] package contains the de�nition of an object for automatic dif-ferentiation and its associated operations. The MJ1 package uses Turbo Pascal v5.5to de�ne an Ad object. Each Ad object contains a scalar value, gradient vector, andHessian matrix. The standard unary and binary elementary functions are de�nedas procedures that operate on Ad objects. These procedures propagate derivativevalues from one object to another in the forward mode.



6 Part VIII. Experience with Automatic Di�erentiation SoftwareComplex operations are performed onAd objects by the execution of an appropriatesequence of elementary procedures. For example, the statement f = x+ cos(z � y),broken down into the elementary operations t1 = z�y, t1 = cos(t1), and f = x+t1,is written as follows using MJ1.t1.AdMultiply(z,y) ;t1.AdCos(t1) ;f.AdAdd(x,t1) ;(3) The implementation of the FEED (the fast e�cient evaluation of derivatives)algorithm by Tesfatsion et al. [Tesf91a] consists of a suite of FORTRAN subrou-tines that evaluate a function value and its �rst-, second- and third-order partialderivatives with respect toN independent variables. In the FEED implementation,derivatives are propagated in the forward mode as operations are performed. Thisimplementation is similar to the UCOMP package [Laws71a, Math89a].4.2 The Extensional Tools. The class of extensional tools contains the largestnumber (nine) of the surveyed tools. This class consists primarily of precompilers. Ofthe tools in this class, four produce derivatives strictly in the forward mode, one producesderivatives only in the reverse mode, and four use both modes. Figure 2 illustrates thisfact.
PCOMPPCOMPPADRE2 PADRE2GRESS GRESSDAPRE DAPREFORTRAN CALCULUSATOMFTJAKEF DAFORGRADForward ModeReverse Mode

Figure 2: Extensional tools subdivided by di�erentiation approach.(4) The general purpose ordinary di�erential equation (ODE) solverATOMFT [Chan82a]is an AD tool in the sense that it provides the automatic generation of code toevaluate Taylor series; however, automatic di�erentiation is not its primary focus.ATOMFT is a FORTRAN preprocessor that generates FORTRAN source code tosolve systems of ODEs. ATOMFT takes as input a system of ODEs written usinga FORTRAN-like syntax. The code generated by ATOMFT uses a Taylor seriesalgorithm to solve the system of ODEs. User-de�ned functions are supported.ATOMFT reads the system of di�erential equations and writes FORTRAN sourcecode that uses the recurrence relations derived from each equation to generate theappropriate Taylor series values. The code generated by ATOMFT propagates theTaylor series values strictly in the forward mode. The length of the generatedTaylor series is arbitrary and is controlled by user-speci�ed parameters.(5) The FORTRAN precompiler DAFOR [Berz87a, Berz89a, Berz90a] transforms ex-isting FORTRAN code into FORTRAN code that also evaluates derivatives. Partialderivatives can be calculated to an arbitrary-order and with respect to an arbitrarynumber of independent variables. The transformation creates calls to a library of



Taxonomy of Automatic Di�erentiation Tools 7subroutines for the elementary operations. These subroutines propagate derivativevalues in the forward mode.(6) DAPRE [Step91a] is a FORTRAN preprocessor. It takes as input a FORTRANsubroutine and produces a new FORTRAN subroutine in which all of the arithmeticoperations are converted to calls to subroutines from a supporting run-time library.The new FORTRAN subroutine can be used in conjunction with other supportinglibrary functions to generate the partial derivatives of the dependent variables ofthe subroutine with respect to the independent variables of the subroutine. Thepreprocessor determines which parameters are independent and which parametersare dependent by their respective position in the parameter list of the subroutine.Either the forward mode or the reverse mode can be used to propagate derivativevalues using DAPRE. (This is done by linking the program with the appropriaterun-time library.) Derivatives can be calculated to arbitrary order. The preproces-sor puts some restrictions on the subset of FORTRAN used to de�ne the subroutine(see [Step91a]). For example, EQUIVALENCE statements are not allowed. Thispackage was designed to interface smoothly with the NAG library of mathematicalsoftware, but it is not NAG speci�c.(7) GRAD [Garc91a] is a FORTRAN preprocessor. GRAD takes as input a FOR-TRAN subroutine that computes a function and produces a FORTRAN subroutinethat computes the function and its �rst-order partial derivatives with respect tospeci�ed independent variables. Subroutines produced by GRAD can be recycledthrough GRAD to produce routines for calculating higher-order derivatives. Thecode that GRAD generates directly computes the partial derivatives and producesJacobian matrices.Unlike many other precompilers, GRAD uses no subroutines that represent elemen-tary operations. The partial derivatives are calculated directly and are placed inspecially named variables. The code generated by GRAD propagates derivatives inthe forward mode.(8) TheGRESS (GRadient Enhanced Software System) [Horw88a] package is a systemfor adding the ability to calculate normalized sensitivities and �rst-order partialderivatives to existing FORTRAN programs. The GRESS package consists of aFORTRAN precompiler and a library of supporting routines.The GRESS precompiler produces code that propagates derivatives using eitherthe forward or reverse mode. When the GRESS \Chain" option is selected anda set of independent variables is declared, the GRESS precompiler produces codefor calculating the derivatives of speci�ed dependent variables with respect to thedeclared independent variables. The GRESS \Chain" option produces code thatpropagates derivatives using the forward mode. When the GRESS \Adgen" optionis selected, the GRESS precompiler produces code that calculates the derivativesof the speci�ed dependent variables with respect to every variable initialized byFORTRAN READ statements. The GRESS \Adgen" option produces code that prop-agates derivatives using the reverse mode.GRESS has been used successfully on a variety of problems. Examples of theapplication of GRESS can be found in [Horw89a, Horw90a, etc.].(9) FORTRAN CALCULUS [Tham89a, Tham91a] (denoted here by FC) is a com-mercially available package for mathematical modeling. FC is an extension of FOR-TRAN 77 that provides macro statements for di�erentiation, optimization and in-tegration, dynamic arrays, and vector and matrix operations. The FC packageconsists of a FORTRAN precompiler and a run-time library of supporting routines.



8 Part VIII. Experience with Automatic Di�erentiation SoftwareFC's extension to FORTRAN is based on a paradigm referred to as synthetic cal-culus in [Tham82a, Krin84a, Tham89a, Tham91a]. The basic unit within thisparadigm is a model . Models are subprograms that contain sets of formulas. Di�er-entiation, optimization and integration are performed on speci�ed models. Modelsmay include macro statements for optimization and integration. This allows forthe nesting of models.Di�erentiation is performed transparently within the optimization and integrationprocesses. The optimization and integration routines use automatically generatedpartial derivative values from speci�ed models. These partial derivatives are cal-culated during the execution of the speci�ed model. In order to calculate thesederivatives automatically, the FC precompiler converts statements within a modelto sequences of subroutine calls. The subroutines propagate the values of variablesand their partial derivatives using the forward mode. These subroutines can calcu-late �rst- and second-order partial derivatives with respect to an arbitrary numberof independent variables.(10) JAKEF [Hill85a] is another FORTRAN precompiler. JAKEF is a version of JAKE[Spee80a] that was developed at Argonne National Laboratory and written usingFORTRAN 77. JAKEF takes as input a FORTRAN subroutine de�ning a scalar orvector function, and generates a FORTRAN subroutine for computing the gradientor Jacobian of the function, respectively. The code generated by JAKEF traces theexecution of the function and then uses that trace to propagate derivatives in thereverse mode. The trace is stored in a linearized form in auxiliary integer and realarrays. There is no facility in JAKEF for using auxiliary storage on large traces,although Speelpenning mentions in his unpublished thesis [Spee80a] how such atechnique could be implemented.(11) PADRE2 [Irim87a, Kubo90a] is also a FORTRAN precompiler. PADRE2 is an ex-tended version of PADRE, which was developed by N. Iwata [Iwat84a]. PADRE2processes a FORTRAN function or subroutine that evaluates a scalar or vectorfunction and then produces a modi�ed subroutine. This subroutine calculates theoriginal function, its partial derivatives, and an estimate of the rounding errorgenerated. The subroutine executes a sequence of elementary operations for eachstatement in the original function and builds a computational graph of the execu-tion. The computational graph is later traversed by the subroutine to propagatederivatives and calculate rounding errors. A command line option of PADRE2determines which mode is used to propagate derivatives.PADRE2 can be used to calculate �rst- and second-order partial derivatives. Forexample, if g is a scalar function with independent variables X =< x1; x2; :::; xn >,and Y =< y1; y2; :::; yn > is a vector, then the subroutine generated by PADRE2can calculate g(X), the gradient 5g(X), the Hessian-vector product 52g(X) � Y ,and an estimate of the rounding error 4g(X).The computational graph produced by a PADRE2 generated subroutine is storedexclusively in main memory.(12) The PCOMP [Liep90a] package consists of three independent parts. The �rstpart (a) processes the description of function written in a subset of an extension toFORTRAN, and compiles it into an intermediate code. The second part (b) usesthe intermediate code generated by (a) to evaluate the function and its gradientat a single point. Part (b) interpretes the intermediate code and propagates �rst-order derivatives in the forward mode. The third part (c) uses the intermediatecode from (a) to generate FORTRAN subroutines for evaluating the function andits gradient. The subroutines generated by (c) propagate derivatives in the reverse



Taxonomy of Automatic Di�erentiation Tools 9mode.4.3 The Operational Tools. Of the tools surveyed, eight are operational tools. Ofthese tools, six produce derivatives strictly in the forward mode, one produces derivativesstrictly in the reverse mode, and one uses both modes. The languages ADA, C++, andPASCAL-SC were used to implement these packages. Two of the packages were imple-mented using ADA, four using C++, and two using PASCAL-SC. This fact is illustratedin Figure 3. MJ2MXYZPTLK GC1BC1 RN1RL1ADOL-C
C++ PASCAL-SCADAGC2Figure 3: Operational tools subdivided by implementation language.(13) The ADOL-C [Grie92a, Jued90a] package consists of a de�nition of a class of ac-tive variables called adouble, and a library of supporting routines. ADOL-C waswritten using C++, and can be used to di�erentiate algorithms written in C orC++. With the help of the f2c converter, ADOL-C can also handle FORTRANcodes. To di�erentiate a vector function < y1; y2; :::; yn >= F (< x1; x2; :::; xm >),a user of ADOL-C (i) declares appropriate variables as adoubles , (ii) declares thevariables < y1; :::; yn > to be dependent, and declares < x1; :::; xm > to be inde-pendent, (iii) traces the computation of F , and (iv) calls routines to generate thepartial derivatives. The trace of a computation is used by routines that propagatederivatives in either the forward or reverse mode. First- and higher-order partialderivatives can be calculated by successively propagating derivatives in the forwardand reverse mode.In ADOL-C, arbitrarily nested or recursive functions can be di�erentiated. Also,the trace of a function is stored sequentially in main memory and is automaticallypaged to disk when necessary.(14) The BC1 [Chri90a] package uses operator overloading in ADA to provide a newdata type that aids in the calculation of derivatives. When functions using thisnew type are executed, the computational graph of that execution is created. Thiscomputational graph, which is stored in a linearized form, is used by other routinesto propagate derivatives in the reverse mode. The BC1 package can be used togenerate �rst- and second-order partial derivatives (i.e., gradients and Hessians).(15) GC1 [Corl91a, Corl91b] is an ADA package for operations on interval valued Taylorseries. To generate Taylor series, a user of GC1 writes a program that declares theappropriate variables to be of the Taylor type and uses the overloaded operationsprovided by GC1. During the execution of such a program, the Taylor series are



10 Part VIII. Experience with Automatic Di�erentiation Softwarecalculated in the forward mode automatically. The generated Taylor series couldbe arbitrarily long. GC1 was designed to be used in an interval ODE solver. Ittakes special care of applications (like ODEs) in which the Taylor series terms mustbe completed one term at a time. User-de�ned functions and procedures involvingvariables of Taylor type are supported.(16) The GC2 [Corl84a] package is written in PASCAL-SC and is used to computepoint and interval valued Taylor series operators. GC2 declares the Taylor seriesdata types Real Taylor Type and Interval Taylor Type, and overloads all of thePASCAL-SC elementary functions for them. The user of GC2 writes a programusing either Real Taylor Type or Interval Taylor Type variables. During the exe-cution of the program, the Taylor series of the desired lengths are calculated in theforward mode. User-de�ned functions and procedures are supported.(17) The MJ2 [Jerr89b, Jerr90a] package is very similar to the MJ1 package describedin x4.1. MJ2 is written using Turbo C++ v1.0. MJ2 uses operator overloading,and therefore the example code segment f = x+ cos(z � y) from x4.1 does not needto be modi�ed.(18) The MXYZPTLK [Mich90a] package is an operational AD tool written in C++.The MXYZPTLK package de�nes two classes, DA and DAVector, and providesa library of supporting routines. A number of binary and unary operations areoverloaded for these classes (e.g. +, *, sin, cos, etc.). When variables fromthe two classes are used, derivative values are propagated in the forward mode.MXYZPTLK can be used to calculate arbitrary-order partial derivatives with re-spect to arbitrarily many independent variables.(19) RL1 [Lind91a] is another operational AD tool written in C++. The RL1 packageis used to generate derivatives for scalar or vector functions of a single real variable(time). The RL1 package de�nes a class of tuples which contain the value of a func-tion and its derivatives with respect to a single independent variable. Operationsapplied to tuples produce tuples of the same form. The standard operations areoverloaded for this class. When operations are executed on members of this class,the derivative values are propagated along with the function values in the forwardmode. Derivatives up to the third order can be calculated.(20) The RN1 [Neid91a] package is an operational AD tool written in PASCAL-SC.RN1 de�nes a new data type for which the standard operations are overloaded.When operations using this new type are executed, derivatives are propagatedin the forward mode. Partial derivatives to arbitrary order and with respect toarbitrarily many independent variables can be calculated. Currently, the author ofRN1 considers it to be purely a research project.4.4 The Integral Tools. Of the tools surveyed, four are integral tools. Of these,one uses the forward mode of automatic di�erentiation, one uses the reverse mode, and twouse both modes.(21) The ADDS (Automatic Derivative Derivation System) [Yosh89a] package is anAD tool that de�nes a new language. The ADDS package provides a languagefor describing scalar, vector, and matrix expressions, and their partial derivatives.Expressions de�ned in the ADDS language are translated into FORTRAN. Duringthe translation process, a computational graph of the expression (and alternativelya graph for its partial derivatives) is generated. This computational graph is usedto generate the FORTRAN code. The translation process can produce code thatcalculates partial derivatives in either the forward or reverse mode. The partialderivatives can be calculated to arbitrary order and with respect to arbitrarilymany independent variables. ADDS also provides facilities for estimating rounding



Taxonomy of Automatic Di�erentiation Tools 11errors.(22) The modeling language AMPL [Four90a, Gayd91b] is a declarative language thatwas designed for expressing mathematical programming problems. Mathematicalprogramming problems are described in AMPL by a sequence of nonlinear expres-sions. The AMPL translator emits a representation of the DAG for each nonlinearexpression given. The DAG can then be used by various solvers to evaluate theexpression and its gradient at the points leading to a solution. Depending on thesolver, the evaluation of gradients is performed using either the forward mode, thereverse mode, or a combination of both modes. The DAG of an expression can alsobe used to produce FORTRAN or C routines for calculating the expression and itsgradient at a point.(23) The FM/FAD [Mazo91a] package is a PC-based set of tools for problem man-agement. Problems (i.e., functions) are de�ned in FM/FAD using DIFALG, anALGOL-60 like programming language. Function de�nitions are compiled by theDIFALG compiler and the compiled version is used by the DIFALG interpreter.The problem solving aspect of the FM/FAD package uses the DIFALG interpreterdirectly to calculate function values and their gradients evaluated at a point. TheDIFALG interpreter calculates the gradient of the function via the reverse mode.The FM/FAD package only generates �rst-order partial derivatives.(24) FOXY [Berz90b, Berz90c, Berz90d] is an object-oriented programming languagethat is similar to PASCAL. FOXY has built in facilities for automatically di�er-entiating functions written in that language. Arbitrary-order partial derivativeswith respect to arbitrarily many variables can be calculated. These derivatives arecalculated in the forward mode.4.5 The Symbolic Tools. The class of symbolic AD tools contains �ve members.Of the members of this class, four use the forward mode of automatic di�erentiation, whileonly one uses the reverse mode.(25) The AD [Flan91b] program is a PC-based menu driven program for producingnumeric function and derivative values. The AD program allows a function to beentered symbolically. Once entered, the symbolic representation of the function isparsed and a tree representing the function is built internally. The function and itsderivatives (up to the 20th order) can then be evaluated at a point. The evaluationprocess propagates derivatives in the forward mode. Currently the AD package isonly a demonstrational tool.(26) The GRAD [Hill91a] function within the MATLAB library of mathematical soft-ware can calculate gradients interactively. The parameters to the GRAD functionare a character string containing the symbolic description of a function of n vari-ables and a point in n-space (i.e., an array containing n real values). GRAD returnsan array of n+1 values containing the function value and its gradient evaluated atthat point. The character string is parsed internally by the GRAD function, whichthen uses the forward mode to evaluate the gradient. The GRAD function can becalled by C programs.(27) The newest version (5.1) of MAPLE [Mona91a] can perform automatic di�eren-tiation. In Maple, functions are expressed as Maple procedures. The Maple Droutine produces Maple procedures that evaluate single derivative values for func-tions described by other Maple procedures. The Maple optimize routine can thenbe used to optimize these procedures. Procedures for derivative values of arbitraryorder and with respect to arbitrary independent variables can be generated. Theseprocedures calculate derivatives in the forward mode. Maple procedures can beconverted into FORTRAN or C subroutines.



12 Part VIII. Experience with Automatic Di�erentiation Software(28) The NR1 package [Rost91a] is a symbolic AD tool. NR1 is implemented in LISPwithin the Reduce Computer Algebra system. NR1 processes a Reduce procedurethat satis�es certain restrictions and produces an array of Reduce expressions.These Reduce expressions calculate the gradient of the function in the reverse mode.This array of Reduce expressions can be converted to FORTRAN by the Reducesystem. Currently the NR1 package is purely a research AD tool.(29) The suite of FORTRAN programs SVALAQ (Self-Validating AdaptiveQuadrature) [Corl87a] contain elements that allow it to be classi�ed as a sym-bolic AD tool. This suite of programs produces guaranteed bounds on the valuesof certain de�nite integrals by using automatic di�erentiation. SVALAQ takes asinput a single FORTRAN expression (no longer than 80 characters) for the inte-grand. The expression is parsed and a code list is generated. From the code list,quadrature rules for some special weight functions are activated. The code list isinterpreted and interval-valued Taylor series are calculated in the forward mode.The calculated Taylor series are of arbitrary length.SVALAQ is proprietary to IBM, and has not been released publicly.5 Conclusion. In an e�ort to clarify the current state of AD technology, we pre-sented a taxonomy of automatic di�erentiation tools in x3, and applied that taxonomy to asurvey of twenty-nine AD tools in x4. We hope that this paper will be a valuable resourcefor those interested in applying automatic di�erentiation to their particular application.Interested readers are directed to Appendix A for further information regarding the ADtools presented in x4. The appendix contains a list detailing the availability of numerousAD tools.Acknowledgments. I thank Chris Bischof, George Corliss, Andreas Griewank, andJames Lathrop for helpful suggestions in the preliminary stages of this paper. I also thank allof the many authors who provided information on their respective automatic di�erentiationtools.Appendix A. A number of the automatic di�erentiation tools mentioned here areeither commercially available, available as beta test versions to educational institutions, oravailable upon request. The following list details the availability of the various packages.ADDS The ADDS package can be obtained by contacting Dr. Toshinobu Yoshida (yoshida@cs.gunma-u.ac.jp), Dept. of Computer Science, Gunma University, Kiryu, Gunma376, Japan. This package should run on any system with Common LISP.ADOL-C The source code and documentation for ADOL-C can be obtained via elec-tronic mail by contacting Andreas Griewank (griewank@antares.mcs.anl.gov), c/oArgonne National Labs, Div. of Math & Computer Science, 9700 S. Cass Avenue,Argonne, IL 60439. (312) 972-6722.AMPL Currently, most universities can obtain a beta-test version of the AMPL transla-tor. Licensing for non-academic purposes is being planned. The AMPL translatorshould run on any system with a C compiler. For further details, contact David M.Gay (dmg@research.att.com), AT&T Bell Laboratories, Room 2C-463, 600 Moun-tain Avenue, Murray Hill, NJ 07974-2070, U.S.A., (908) 582-5623.



Taxonomy of Automatic Di�erentiation Tools 13Package Mode Source Avail.1 Deriv+2ElementalWCOMP F FORTRAN X XFEED F FORTRAN XMJ1 F PASCAL X XIntegralFOXY F FOXY X XFM/FAD R DIFALG XAMPL B AMPL XADDS B ADDS X XExtensionalATOMFT F FORTRAN exp. X XDAFOR F FORTRAN X XFC F FORTRAN X XGRAD F FORTRAN sub. X XJAKEF R FORTRAN sub. XDAPRE B FORTRAN sub. X XGRESS B FORTRAN XPADRE2 B FORTRAN sub, X XPCOMP B FORTRAN sub. X XOperationalGC1 F ADA X XGC2 F PASCAL-SC X XMJ2 F C++ X XMXYZPTLK F C++ X XRL1 F C++ X XRN1 F PASCAL-SC XBC1 R ADA X XADOL-C B C++ X XSymbolicAD F Symbolic XMATLAB F Symbolic X XSVALAQ F FORTRAN exp. XMAPLE F Maple procedure X XNR1 R Reduce procedure XTable 1: AD tools divided by class.
1The details regarding the availability of the checked packages are in Appendix A.2Check marks indicate that those packages can generate higher than �rst-order derivatives.



14 Part VIII. Experience with Automatic Di�erentiation SoftwareATOMFT This can be obtained from George Corliss (georgec@boris.mscu.mu.edu) Dept.of Math., Marquette University, Milwaukee, WI 53233. Any system with a Fortran77 compiler should be su�cient. The preferred form of distribution is e-mail or a5 1/2" 
oppy, but other forms can be negotiated.BC1 The BC1 package is available solely for educational and research purposes (no com-mercial or military use). The source for BC1 is written in ADA, and can be obtainedby contacting Bruce Christianson (comqbc@hat�eld.ac.uk), Numerical Optimisa-tion Centre, Hat�eld Polytechnic, Hat�eld Hertfordshire AL10 9AB, England.DAFOR The tool is available from Martin Berz for non-commercial scienti�c use. Itruns on any standard FORTRAN 77 system and has been used on VAX, SUN,CRAY, CYBER, IBM PC, and MACINTOSH machines. Code can be obtained viaBITNET or on tape or 
oppy by contacting BERZ@MSUNSCL.BITNET.DAPRE Both Sun/Unix and VAX/VMS versions of DAPRE exist. For more information,contact NAG Ltd., Wilkinson House, Jordan Hill Road, Oxford OX2 8DR, U.K.(telephone (+44)-865-511245 or fax (+44)-865-310139) or NAG Inc., 1400 OpusPlace, Suite 200, Downers Grove, IL 60515-5702, USA (telephone (+1)-708-971-2337 or fax (+1)-708-971-2706).FC FORTRAN CALCULUS is a commercially available product of the Digital CalculusCorporation. For more information, contact Davis Allen, VP Marketing, DigitalCalculus Corp., 2615 Paci�c Coast Hwy. Suite 215, Hermosa Beach, CA 90254,(213)-318-8822, (213)-318-2142 (FAX).FM/FAD Those interested in obtaining the FM/FAD system should contact Dr. VladimirP. Mazourik, Department of Application Software for Personal Computers, Com-puting Center, USSR Academy of Sciences, Vavilova str. 40, Moscow 117967,USSR, 135-6161.FOXY The tool is available from Martin Berz for non-commercial scienti�c use after sign-ing a short user registration including a non-proliferation agreement. It runs on anystandard FORTRAN 77 system and has been used on VAX, SUN, CRAY, CYBER,IBM PC, and MACINTOSH machines. Code can be obtained via BITNET or ontape or 
oppy by contacting BERZ@MSUNSCL.BITNET.GC1 The GC1 package of interval Taylor operators is available fromGeorge Corliss (georgec@boris.mscs.mu.edu), Dept. of Math., Marquette University, Milwaukee, WI, 53233.The source code can be obtained directly via e-mail. It is also available on 3 1/2"or 5 1/2" 
oppies, or other media by request.GC2 The GC2 package of real and interval Taylor operators can be obtained by e-mail oron 
oppy disks by contacting George Corliss (georgec@boris.mscs.mu.edu), Dept.of Math., Marquette University, Milwaukee, WI, 53233, or Louis Rall (rall@ math.wisc.edu), Dept. of Math., University of Wisconsin - Madison, Madison, WI 53706.GRAD The GRAD precompiler is free and can be obtained by contacting Oscar Garcia(garciao@mof.govt.nz or garciao%mof.govt.nz@uunet.uu.net), Forest Research In-stitute, Private Bag 3020, Rotorua, New Zealand. GRAD was written in APL. Twoversions of GRAD are available, one for STSC APL*PLUS (which also runs withPocket APL), and the other for the public domain I-APL interpreter .GRESS GRESS can be obtained by contacting the Radiation Shielding and InformationCenter (RSIC), Oak Ridge National Laboratory, MS-6362, P.O. Box 2008, OakRidge TN 37831-6362, (615)-574-6176. RSIC charges a nominal recovery cost forGRESS. For more detailed information about GRESS, contact James Horwedel(jqh@ctd.ornl.gov), Computing and Telecommunications Division, Oak NationalLaboratory, Oak Ridge, TN 37831.



Taxonomy of Automatic Di�erentiation Tools 15JAKEF This package currently resides on NETLIB.3 Both the documentation and thesources for JAKEF can be obtained from NETLIB. JAKEF was written usingFORTRAN-77 and has been ported to a variety of di�erent machines.MATLAB The source or executable code for the GRAD function in MATLAB is availablefrom David R. Hill, Mathematics Department, Temple University, Philadelphia, Pa.19122, or Lawrence C. Rich, The Mathematical Software Group, 54 Sequoia Drive,Newtown, Pa. 18940.MJ1 & MJ2 The source code for both of these tools is available at no charge, and canbe obtained by contacting Max E. Jerrell, College of Business Admin., NorthernArizona University, C.U. Box 15066, Flagsta�, AZ 86011. MJ1 was written usingTurbo Pascal v5.5 and MJ2 was written using Turbo C++ v1.0.MXYZPTLK The source code and documentation for MXYZPTLK can be obtained bycontacting Dr. Leo Michelotti (michelotti@adcalc.fnal.gov), c/o Fermi Lab., P.O.Box 500, Mail Station 345, Batavia, IL 60510. (708)-840-4956.RL1 The source code for RL1 is available, subject to the approval of management atthe Aerospace Corporation. Those interested should contact either Dan Kalman(kalman@aerospace.aero.org) or Robert Lindell (lindell@aerospace.aero.org), M1/102,The Aerospace Corporation, P.O. Box 92957, Los Angeles, CA 90009-2957PADRE2 The source code and documentation for PADRE2 can be obtained by contactingDr. Koichi Kubota (kubota@ae.keio.ac.jp), Dept of Adm. Engineering, Faculty ofScience and Technology, Keio University, 3-14-1, Hiyoshi Kohuku-ku, Yokohama223, Japan. PADRE2 is available under UNIX as uuencoded compressed tar-�levia electronic mail, or on a 720Kbyte Floppy Disk under DOS.PCOMP PCOMP was implemented and tested on VAX/VMS, HP-UNIX and MS-DOSsystems, in the latter case by using two di�erent compilers. Thus PCOMP shouldrun on the majority of existing computer systems. The source code is distributedby Prof. K. Schittkowski (Klaus.Schittkowski@uni-bayreuth.de), MathematischesInstitut, Universit�at Bayreuth, 8580 Bayreuth, Germany, and can be obtained ona MS-DOS diskette or a tape.WCOMP The WCOMP and UCOMP packages can be used on any system with FOR-TRAN 77. They are available as part of the MATH77 library. The MATH77 libraryand its manual are available at a nominal price from COSMIC (Computer SoftwareManagement and Information Center), The University of Georgia, 382 East BroadStreet, Athens, GA 30602. Persons with a research interest in the packages shouldcontact Charles Lawson directly (Charles LAWSON@jems.jpl.nasa.gov).References[Adam69a] D. S. Adamson and C. W. Winant, A SLANG simulation of an initiallystrong shock wave downstream of an in�nite area change, in Proceedings of the Confer-ence on Applications of Continuous-System Simulation Languages, 1969, pp. 231{240.[Berz87a] M. Berz, The di�erential algebra FORTRAN precompiler DAFOR, TechnicalReport AT{3 TN{87{32, Los Alamos National Laboratory, Los Alamos, NM, 1987.[Berz89a] , Di�erential algebraic description of beam dynamics to very high order, Par-ticle Accelerators, 24 (1989), p. 109.[Berz90c] , Computational aspects of design and simulation: COSY INFINITY, Nu-clear Instruments and Methods, A298 (1990), pp. 473 +.[Berz90d] , COSY INFINITY, an arbitrary order general purpose optics code, in Com-puter Codes and the Linear Accelerator Community, Los Alamos LA{11857{C, 1990,3Netlib is a network service for the distribution of mathematical software via electronic mail. To receivemore information, send the mail message \send index" to netlib@research.att.com.



16 Part VIII. Experience with Automatic Di�erentiation Softwarepp. 137 +.[Berz90b] , COSY INFINITY version 3 reference manual, Technical Report MSUCL {751, National Superconducting Cyclotron Lab., Michigan State University, East Lans-ing, Mich. 48824, 1990.[Berz90a] , Di�erential algebra precompiler version 3 | Reference manual, Techni-cal Report MSUCL { 755, National Superconducting Cyclotron Laboratory, MichiganState University, East Lansing, Mich. 48824, 1990.[Chan82a] Y. F. Chang and G. F. Corliss, Solving ordinary di�erential equations usingTaylor series, ACM Trans. Math. Software, 8 (1982), pp. 114{144.[Chri90a] B. D. Christianson, Automatic Hessians by reverse accumulation, TechnicalReport NOC TR228, The Numerical Optimisation Center, Hat�eld Polytechnic, Hat-�eld, U.K., April 1990.[PROS77a] Control Data Corporation, PROSE { A General Purpose Higher LevelLanguage, 1977. Procedure Manual (Pub. No. 84003000 Rev. B), Calculus OperationsManual (Pub. No. 84003200 Rev. A), Calculus Applications Guide (Pub. No. 84000170Rev A).[Corl91a] G. F. Corliss, Overloading point and interval Taylor operators, in AutomaticDi�erentiation of Algorithms: Theory, Implementation, and Application, A. Griewankand G. F. Corliss, eds., SIAM, Philadelphia, Penn., 1991, pp. 139{146.[Corl84a] G. F. Corliss and L. B. Rall, Automatic generation of Taylor series in Pascal-SC: Basic operations and applications to di�erential equations, in Trans. of the FirstArmy Conference on Applied Mathematics and Computing (Washington, D.C., 1983),ARO Rep. 84-1, U. S. Army Res. O�ce, Research Triangle Park, N.C., 1984, pp. 177{209.[Corl87a] , Adaptive, self-validating quadrature, SIAM J. Sci. Stat. Comput., 8 (1987),pp. 831{847.[Corl91b] , Computing the range of derivatives, in IMACS Annals on Computing andApplied Mathematics, E. Kaucher, S. M. Markov, and G. Mayer, eds., vol. 12 ofIMACS Annals on Computing and Applied Mathematics, J. C. Baltzer AG, Basel,1991, pp. 195{212.[Flan91b] H. Flanders, Response to electronic mail survey. Personal communication,March 1991.[Four90a] R. Fourer, D. M. Gay, and B. W. Kernighan, A modeling language formathematical programming, Management Science, 36 (1990), pp. 519{554.[Garc91a] O. Garc��a, A system for the di�erentiation of Fortran code and an applicationto parameter estimation in forest growth models, in Automatic Di�erentiation of Al-gorithms: Theory, Implementation, and Application, A. Griewank and G. F. Corliss,eds., SIAM, Philadelphia, Penn., 1991, pp. 273{286.[Gayd91b] D. M. Gay, Response to electronic mail survey. Personal communication, March1991.[Grie89a] A. Griewank, On automatic di�erentiation, in Mathematical Programming: Re-cent Developments and Applications, M. Iri and K. Tanabe, eds., Kluwer AcademicPublishers, 1989, pp. 83{108. Also appeared as Preprint MCS{P10{1088, Mathematicsand Computer Science Division, Argonne National Laboratory, Argonne, Ill., October1988.[Grie92a] A. Griewank, D. Juedes, J. Srinivasan, and C. Tyner, ADOL-C, a packagefor the automatic di�erentiation of algorithms written in C/C++, ACM Trans. Math.Software, (to appear). Also appeared as Preprint MCS{P180{1190, Mathematics andComputer Science Division, Argonne National Laboratory, Argonne, Ill., 1990.[Hill91a] D. R. Hill and L. C. Rich, Automatic di�erentiation in MATLAB, Applied



Taxonomy of Automatic Di�erentiation Tools 17Numerical Mathematics, (to appear).[Hill85a] K. E. Hillstrom, Users guide for JAKEF, Technical Memorandum ANL/MCS{TM{16, Mathematics and Computer Science Division, Argonne National Laboratory,Argonne, Ill., 1985.[Horw90a] J. E. Horwedel, R. J. Raridon, and R. Q. Wright, Sensitivity analysis ofAIRDOS{EPA using ADGEN with matrix reduction algorithms, Technical Memoran-dum ORNL/TM 11373, Martin Marietta Energy Systems, Inc., Oak Ridge NationalLaboratory, Oak Ridge, Tenn. 37830, 1989.[Horw88a] J. E. Horwedel, B. A. Worley, E. M. Oblow, and F. G. Pin, GRESSversion 1.0 users manual, Technical Memorandum ORNL/TM 10835, Martin MariettaEnergy Systems, Inc., Oak Ridge National Laboratory, Oak Ridge, Tenn. 37830, 1988.[Horw89a] J. E. Horwedel, R. Q. Wright, and R. E. Maerker, Sensitivity analysisof EQ3, Technical Memorandum ORNL/TM 11407, Oak Ridge National Laboratory,Oak Ridge, Tenn. 37830, 1990.[Irim87a] M. Iri and K. Kubota, Methods of fast automatic di�erentiation and applica-tions, Research Memorandum RMI 87 { 02, Department of Mathematical Engineeringand Information Physics, Faculty of Engineering, University of Tokyo, 1987.[Iwat84a] N. Iwata, Automatization of the computation of partial derivatives, master'sthesis, Graduate School, University of Tokyo, 1984. (In Japanese).[Jerr89a] M. Jerrell, Automatic di�erentiation and function minimization in C++, inProceedings of OOP{SLA, ACM Press, 1989, pp. 18{24.[Jerr89b] , Automatic di�erentiation using almost any language, ACM SIGNUMNewsletter, (1989), pp. 2{9.[Jerr90a] , Automatic di�erentiation using C++, Journal of Object Oriented Program-ming, (1990), pp. 17{24.[Jued90a] D. Juedes and A. Griewank, Implementing automatic di�erentiation e�-ciently, Technical Memorandum ANL/MCS{TM{140, Mathematics and Computer Sci-ences Division, Argonne National Laboratory, Argonne, Ill., 1990.[Krin84a] B. Krinsky and J. Thames, The structure of synthetic calculus, in Proceedingsof the International Workshop on High-Level Computer Architecture, University ofMaryland, 1984.[Kubo90a] K. Kubota and M. Iri, PADRE2, version 1 | User's manual, ResearchMemorandum RMI 90{01, Department of Mathematical Engineering and InformationPhysics, Faculty of Engineering, University of Tokyo, 1990.[Laws71a] C. L. Lawson, Computing derivatives using W-arithmetic and U-arithmetic,Internal Computing Memorandum CM{286, Jet Propulsion Laboratory, Pasadena, CA91105, September 1971.[Liep90a] M. Liepel and K. Schittkowski, PCOMP: A FORTRAN code for automaticdi�erentiation, Report No. 254, DFG Schwerpunktprogramm AnwendungsbezogeneOptimierung und Optimale Steuerung, Mathematisches Institut, Universit�at Bayreuth,D-8580 Bayreuth, Germany, 1990.[Lind91a] R. Lindell, Response to electronic mail survey. Personal communication, March1991.[Math89a] MATH,MATH77, Release 3.0, A library of mathematical subprograms for FOR-TRAN 77, Internal Document D{134, Rev. B, Jet Propulsion Laboratory, Pasadena,Calif. 91105, May 1989. Also available as Program No. NPO{18120 from COSMIC(Computer Software Management and Information Center), The University of Geor-gia, Athens, GA.[Mazo91a] V. Mazourik, Integration of automatic di�erentiation into a numerical libraryfor PC's, in Automatic Di�erentiation of Algorithms: Theory, Implementation, and
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